GLOSSARIO SQL

REALIZANDO CONSULTAS COM SQL: J

JOINS, VIEWS E TRANSAGOES

BOAS-VINDAS AO GLOSSARIO DE SOL!

Este € um guia pratico que simplifica os comandos da linguagem de
consulta estruturada. Este glossario foi criado para proporcionar um
auxilio aos comandos mais avancados do SQL, como UNION,
Subconsultas, Joins, Views entre outros. Explore e aprofunde-se no
mundo dos bancos de dados, utilizando este guia para fortalecer sua
compreensao e aplicacao do SQL. Aproveite o material €, em caso de
duvidas, sinta-se a vontade para enviar perguntas atraves do forum
do curso.

Um abraco e bons estudos!

J 4
01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01160101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

<% CRIANDO TABELAS.....c.ooovooieeeeeen, 04 EB JOINS ..ooieiiioeieeeeeeesdeesbeebeeecessesesbsedos st 28
<> CRIANDO TABELAS COM DEFAULT.......... 07 B INNER JOIN...cocviirrrierererereiereeesasaenseserenns 30
- DELETE CASCADE........ccooovvvrrmmrrririnrrrionnas 10 B (RIGHT JOING. o iistiisiiieseetecbasesbersisnssrsiassssbess 33
< UTILIZANDO UNION ...ooooiviieii 13 W= 8 T S S R e 36
< UTILIZANDO UNION ALL ...oovoverrrrenn.. 16 &8 PULNLDOIN.L o s s 39
> SUBCONSULTAS......ooooovieeeoeeeeeeeeee 19 & VIEWANL. Lo T TN A i 41
% SUBCONSULTAS NO IN........cooovvmrririrrnn 22 g% TRIGGER\ NSO S OO\ 45
> SUBCONSULTAS COM HAVING 25 88 TRANSAGOES....iiihldlooioobeoiesieba bl 49

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

CRIANDO TABELAS

V///////////4

Para criarmos tabelas, utilizamos o comando

Alem disso, devemos especificar as informacoes
dessa tabela como o0 nome da tabela, nome das
colunas, tipo de dado de cada coluna, as colunas que
serao chave primaria ou estrangeira, etc.

Por exemplo, a criacao da tabela de produtos, contendo
cinco colunas, ficaria assim:

CREATE TABLE Produtos (

ID TEXT,

Nome VARCHAR(255) NOT NULL,
Descricao TEXT,

Preco DECIMAL(10, 2) NOT NULL,
Categoria VARCHAR(50),

PRIMARY KEY (ID)):

DD
DD
DD
DDDDDDDD

/] Glossario SQL_

CRIANDO TABELAS COM
DEFAULT

V///////////4

DEFAULT, traduzindo para o portugues significa
“padrao”.

Ao utilizar DEFAULT ao criar uma tabela, podemos

definir um valor padrao a ser inserido em um campo
especifico.

V//////4

Por exemplo, se quisermos criar a tabela de clientes

definindo um valor padrao para o campo de email, ficaria
dessa forma:

CREATE TABLE clientes (

id TEXT PRIMARY KEY,

nome VARCHAR(255) NOT NULL,

telefone VARCHAR(20) NOT NULL,

email VARCHAR(100) DEFAULT "Sem email",
endereco TEXT NOT NULL);

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

DELETE CASCADE

V///////////4

Quando utilizamos o DELETE CASCADE ao criar uma
tabela, estamos indicando que sempre que um registro
na tabela pai é excluido, todos 0s registros relacionados
na tabela filho (referenciada) tambem sao
automaticamente excluidos

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 0OOO1010

N\ V//////4

Por exemplo, se quisermos criar a tabela de pedidos
utilizando o , ficaria dessa forma:

CREATE TABLE pedidos (

id TEXT PRIMARY KEY,

idCliente INTEGER,

dataHoraPedido DATETIME,

Status VARCHAR(50),
FOREIGN KEY (idCliente) REFERENCES Clientes(id) ON
DELETE CASCADE

);

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

UTILIZANDO UNION

V///////////4

O operador UNION seleciona apenas valores distintos
entre as tabelas. Para isso, ele combina os resultados
das queries e, em seguida, executa um SELECT
DISTINCT para eliminar os valores duplicados.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 0OOO1010

N V//////4

SELECT Rua, Bairro, Cidade, Estado, CEP
FROM Fornecedores f

UNION

SELECT Rua, Bairro, Cidade, Estado, CEP
FROM Colaboradores c;

Por exemplo, se quisermos retornar de forma distinta
0 endereco completo de todos os colaboradores
e fornecedores em uma unica consulta.

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

UTILIZANDO UNION ALL

V///////////4

O operador UNION ALL tem a mesma func¢ado do UNION,
OuU seja, ele combina os resultados de duas ou mais

queries, a diferenca € que ele mantém os valores
duplicados de cada SELECT.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 0OOO1010

N V//////4

SELECT Rua, Bairro, Cidade, Estado, CEP
FROM Fornecedores f

UNION ALL

SELECT Rua, Bairro, Cidade, Estado, CEP
FROM Colaboradores c;

Por exemplo, se quisermos retornar 0 nome e
endereco completo de todos os colaboradores e
fornecedores em uma unica consulta, mesmo as
informacoes que sao repetidas.

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

SUBCONSULTAS

V///////////4

Subconsultas sdo consultas aninhadas dentro de
outras consultas, que podemos utilizar para retornar
informacdes de uma ou mais tabelas.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 0OOO1010

N V//////4

Por exemplo, vamos retornar o nome de um cliente que
fez um pedido em uma data especifica.

SELECT Nome
FROM clientes
WHERE ID = (
SELECT ID_Cliente
FROM pedidos
WHERE DataHoraPedido='2023-01-62 08:15:00°

);

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

SUBCONSULTAS NO IN

V///////////4

A clausula IN é usada em SQL para verificar se um
valor corresponde a qualquer valor em uma lista
especifica de valores.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 0OOO1010

N\ V//////4

Por exemplo, vamos retornar os nomes dos clientes que
fizeram pedidos no més de janeiro

SELECT Nome
FROM clientes
WHERE ID IN (
SELECT ID_Cliente
FROM pedidos
WHERE strftime('%m', DataHoraPedido) = '01'

);

DD
DD
DD
DDDDDDDD

/] Glossario SQL_

SUBCONSULTAS COM HAVING

V///////////4

A clausula HAVING e usado para filtrar dados depois
gue eles foram agrupados com a clausula GROUP BY.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

N V//////4

Por exemplo, vamos retornar o0 nhome € 0 preco dos
produtos cujo pre¢o € maior que O preco medio de
todos os produtos

SELECT Nome, Preco

FROM produtos

GROUP BY Nome, Preco

HAVING Preco > (
SELECT AVG(Preco)
FROM produtos

);

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

JOINS

V///////////4

A clausula JOIN correspondente a uma operacao
de juncao em algebra relacional - combina colunas de
uma ou mais tabelas em um banco de dados relacional.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 0OOO1010

N V//////4

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

INNER JOIN

V///////////4

O INNER JOIN combina linhas de duas tabelas quando
ha uma correspondéncia entre as colunas especificadas.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

N V//////4

Por exemplo, se quisermos retornar informacdes sobre
0s pedidos e 0s clientes associados a esses pedidos

SELECT p.ID, c.Nome
FROM pedidos p

INNER JOIN clientes c
ON p.IDCliente = c.ID;

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

RIGHT JOIN

V///////////4

O RIGHT JOIN retorna todas as linhas da tabela da
direita e as correspondentes da esquerda.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

N V//////4

I Por exemplo, se quisermos retornar todos 0s registros
da tabela de produtos que estao em algum registro da
tabela de itensPedidos.

SELECT p.Nome

FROM ItensPedido ip
RIGHT JOIN Produtos p
ON p.ID = ip.IDProduto;

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

LEFT JOIN

V///////////4

O LEFT JOIN retorna todas as linhas da tabela
da esquerda e as linhas correspondentes da tabela
da direita.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 0OOO1010

N V//////4

Por exemplo, se quisermos retornar todos 0s registros
da tabela de clientes que estdo em algum registro da
tabela de pedidos.

SELECT C.Nome

FROM Clientes c

LEFT JOIN Pedidos p
ON c.ID = p.IDCliente

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

FULL JOIN

V///////////4

I O combina as linhas de ambas as tabelas
presentes na consulta. Desse jeito, se quisermos retornar
todos 0s clientes e todos os pedidos existentes.

SELECT DISTINCT c.Nome, p.IDCliente
FROM Clientes c

FULL JOIN Pedidos p

ON c.ID = p.IDCliente

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

VIEWS

V///////////4

Uma em SQL € uma consulta armazenada que cria
uma representacao virtual de uma tabela a partir dos
resultados de uma consulta SQL.

Por exemplo, criar uma com a consulta que calcula
o total de cada pedido.

CREATE VIEW ViewTotalPorPedido AS
SELECT

P.ID AS ID_Pedido,

P.DataHoraPedido,

C.Nome AS NomeCliente,

SUM(IP.Quantidade * IP.PrecoUnitario) AS
TotalPorPedido
FROM Pedidos AS P
JOIN Clientes AS C ON P.ID_Cliente = C.ID
JOIN ItensPedido AS IP ON P.ID = IP.ID_Pedido
GROUP BY P.ID, P.DataHoraPedido, C.Nome;

ApOs criar a podemos utiliza-la normalmente como
uma tabela.

SELECT *
FROM ViewTotalPorPedido;

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

TRIGGER

V///////////4

€ um procedimento armazenado que e
executado automaticamente em resposta a um evento
especifico em uma tabela.

Por exemplo, criar uma que calcula
automaticamente o faturamento diario.

CREATE TRIGGER CalculoFaturamentoDiario
AFTER INSERT ON ItensPedido
FOR EACH ROW
BEGIN
DELETE FROM FaturamentoDiario ;
INSERT INTO FaturamentoDiario (Dia, FaturamentoTotal)
SELECT
DATE(P.DataHoraPedido) AS Dia,
SUM(IP.Quantidade * IP.PrecoUnitario) AS Faturamento
FROM Pedidos AS P
JOIN ItensPedido AS IP ON P.ID = IP.ID_Pedido
GROUP BY Dia
ORDER BY Dia;
END;

Ao inserir novos registros na tabela de itenspedidos, a
trigger sera acionada:

INSERT INTO Pedidos(ID, IDCliente, DataHoraPedido,
Status)

VALUES (451, 27, '20623-10-087 14:30:008', 'Em Andamento') ;

INSERT INTO ItensPedidos

(IDPedido, IDProduto, Quantidade, PrecoUnitario)
VALUES(451, 14, 1, 6.90),

(451, 13, 1, 7.0);

01000101 0111001 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000,
01000100 01100001 01100100 01101111 01110011
00001010

/] Glossario SQL_

TRANSACOES

V///////////4

Transacoes no SQL sao usadas para garantir

a consisténcia e integridade dos dados, permitindo
que um conjunto de operacoes SQL seja tratado
COmO uma unica unidade atbmica.

Existem trés principais comandos relacionados

a transacoes no SQL: BEGIN TRANSACTION, COMMIT
e ROLLBACK.

V//////4

Por exemplo, se quisermos iniciar uma transacao
utilizamos o BEGIN ou 0 BEGIN TRANSACTION.

BEGIN TRANSACTION;

V//////4

Por exemplo, se quisermos reverter as alteracoes
realizadas nos dados,utilizamos o comando ROLLBACK.

ROLLBACK :

V//////4

Por exemplo, se quisermos confirmar as alteracoes
realizadas nos dados, utilizamos o comando COMMIT.

COMMIT:

V//////4

UTILIZE E DOMINE O SOL!

Parabéens por explorar o Glossario de SQL! Agora que vocé adquiriu
0S comandos mais avangados da linguagem, € hora de aplicar esse
conhecimento. Utilize este material como referéncia em seus projetos
e desafios, praticando para aprimorar suas habilidades na
manipulacdo de bancos de dados. Ao se tornar mais confiante na
linguagem SQL, vocé estara preparado para enfrentar novos
desafios.

Muito obrigado por chegar ate aqui e nos vemos nNos proximos Cursos
da formacdo em SQL da Alura. Ate mais!

3lUra | &2 oo science

AVALIE O CURSO E
DEIXE UM

Compalﬁg M‘EENJTABIQJS NOVOS

conhecimentos em suas redes sociais.

‘ alura ‘ 8% Escola Data Science |

https://www.alura.com.br/
https://www.alura.com.br/escola-inovacao-gestao

