
Pr
im

ár
ia

s
Ap

oi
o GLOSSÁRIO SQL

01000101 01110011 01100011 01101111 01101100 01100001 00100000
01100100 01100101 00100000 01000100 01100001 01100100

01101111 01110011 00001010

Escola_
DATA SCIENCE

REALIZANDO CONSULTAS COM SQL:
JOINS, VIEWS E TRANSAÇÕES

Pr
im

ár
ia

s
Ap

oi
o

Este é um guia prático que simplifica os comandos da linguagem de
consulta estruturada. Este glossário foi criado para proporcionar um
auxílio aos comandos mais avançados do SQL, como UNION,
Subconsultas, Joins, Views entre outros. Explore e aprofunde-se no
mundo dos bancos de dados, utilizando este guia para fortalecer sua
compreensão e aplicação do SQL. Aproveite o material e, em caso de
dúvidas, sinta-se à vontade para enviar perguntas através do fórum
do curso.

Um abraço e bons estudos!

BOAS-VINDAS AO GLOSSÁRIO DE SQL!

SUMÁRIO 01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001

01100100 01101111 01110011 00001010

Pr
im

ár
ia

s
Ap

oi
o

CRIANDO TABELAS……………………….........

CRIANDO TABELAS COM DEFAULT..........

UTILIZANDO UNION

UTILIZANDO UNION ALL ………………........

SUBCONSULTAS..

INNER JOIN..

RIGHT JOIN……………………………………….……

LEFT JOIN ………………………………………….......

FULL JOIN ..

VIEW ...

SUBCONSULTAS NO IN...............................

SUBCONSULTAS COM HAVING

TRIGGER ...

JOINs …..

TRANSAÇÕES...

DELETE CASCADE......................................

28

30

33

36

39

41

45

49

04

07

10

13

16

19

22

25

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

CRIANDO TABELAS
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

Para criarmos tabelas, utilizamos o comando CREATE
TABLE.

Além disso, devemos especificar as informações
dessa tabela como o nome da tabela, nome das
colunas, tipo de dado de cada coluna, as colunas que
serão chave primária ou estrangeira, etc.

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, a criação da tabela de produtos, contendo
cinco colunas, ficaria assim:

CREATE TABLE Produtos (
ID TEXT,
Nome VARCHAR(255) NOT NULL,
Descricao TEXT,
Preco DECIMAL(10, 2) NOT NULL,
Categoria VARCHAR(50),
PRIMARY KEY (ID));

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

CRIANDO TABELAS COM
DEFAULT

// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

DEFAULT, traduzindo para o portugues significa
“padrão”.

Ao utilizar DEFAULT ao criar uma tabela, podemos
definir um valor padrão a ser inserido em um campo
específico.

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, se quisermos criar a tabela de clientes
definindo um valor padrão para o campo de email, ficaria
dessa forma:

CREATE TABLE clientes (
id TEXT PRIMARY KEY,
nome VARCHAR(255) NOT NULL,
telefone VARCHAR(20) NOT NULL,
email VARCHAR(100) DEFAULT "Sem email",
endereco TEXT NOT NULL);

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

DELETE CASCADE
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

Quando utilizamos o DELETE CASCADE ao criar uma
tabela, estamos indicando que sempre que um registro
na tabela pai é excluído, todos os registros relacionados
na tabela filho (referenciada) também são
automaticamente excluídos

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, se quisermos criar a tabela de pedidos
utilizando o DELETE CASCADE, ficaria dessa forma:

CREATE TABLE pedidos (
 id TEXT PRIMARY KEY,
 idCliente INTEGER,
 dataHoraPedido DATETIME,
 Status VARCHAR(50),
FOREIGN KEY (idCliente) REFERENCES Clientes(id) ON
DELETE CASCADE
);

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

UTILIZANDO UNION
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

O operador UNION seleciona apenas valores distintos
entre as tabelas. Para isso, ele combina os resultados
das queries e, em seguida, executa um SELECT
DISTINCT para eliminar os valores duplicados.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, se quisermos retornar de forma distinta
o endereço completo de todos os colaboradores
e fornecedores em uma única consulta.

SELECT Rua, Bairro, Cidade, Estado, CEP
FROM Fornecedores f
UNION
SELECT Rua, Bairro, Cidade, Estado, CEP
FROM Colaboradores c;

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

UTILIZANDO UNION ALL
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

O operador UNION ALL tem a mesma função do UNION,
ou seja, ele combina os resultados de duas ou mais
queries, a diferença é que ele mantém os valores
duplicados de cada SELECT.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, se quisermos retornar o nome e
endereço completo de todos os colaboradores e
fornecedores em uma única consulta, mesmo as
informações que são repetidas.

SELECT Rua, Bairro, Cidade, Estado, CEP
FROM Fornecedores f
UNION ALL
SELECT Rua, Bairro, Cidade, Estado, CEP
FROM Colaboradores c;

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

SUBCONSULTAS
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

Subconsultas são consultas aninhadas dentro de
outras consultas, que podemos utilizar para retornar
informações de uma ou mais tabelas.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, vamos retornar o nome de um cliente que
fez um pedido em uma data específica.

SELECT Nome
FROM clientes
WHERE ID = (

SELECT ID_Cliente
FROM pedidos
WHERE DataHoraPedido='2023-01-02 08:15:00'
);

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

SUBCONSULTAS NO IN
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

A cláusula IN é usada em SQL para verificar se um
valor corresponde a qualquer valor em uma lista
específica de valores.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, vamos retornar os nomes dos clientes que
fizeram pedidos no mês de janeiro

SELECT Nome
FROM clientes
WHERE ID IN (

SELECT ID_Cliente
FROM pedidos
WHERE strftime('%m', DataHoraPedido) = '01'
);

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

SUBCONSULTAS COM HAVING
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

A cláusula HAVING é usado para filtrar dados depois
que eles foram agrupados com a cláusula GROUP BY.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, vamos retornar o nome e o preço dos
produtos cujo preço é maior que o preço médio de
todos os produtos

SELECT Nome, Preco
FROM produtos
GROUP BY Nome, Preco
HAVING Preco > (

SELECT AVG(Preco)
FROM produtos
);

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

JOINS
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

A cláusula JOIN correspondente a uma operação
de junção em álgebra relacional - combina colunas de
uma ou mais tabelas em um banco de dados relacional.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

INNER JOIN
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

O INNER JOIN combina linhas de duas tabelas quando
há uma correspondência entre as colunas especificadas.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, se quisermos retornar informações sobre
os pedidos e os clientes associados a esses pedidos

SELECT p.ID, c.Nome
FROM pedidos p
INNER JOIN clientes c
ON p.IDCliente = c.ID;

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

RIGHT JOIN
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

O RIGHT JOIN retorna todas as linhas da tabela da
direita e as correspondentes da esquerda.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, se quisermos retornar todos os registros
da tabela de produtos que estão em algum registro da
tabela de itensPedidos.

SELECT p.Nome
FROM ItensPedido ip
RIGHT JOIN Produtos p
ON p.ID = ip.IDProduto;

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

LEFT JOIN
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

O LEFT JOIN retorna todas as linhas da tabela
da esquerda e as linhas correspondentes da tabela
da direita.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, se quisermos retornar todos os registros
da tabela de clientes que estão em algum registro da
tabela de pedidos.

SELECT C.Nome
FROM Clientes c
LEFT JOIN Pedidos p
ON c.ID = p.IDCliente

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

FULL JOIN
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

O FULL JOIN combina as linhas de ambas as tabelas
presentes na consulta. Desse jeito, se quisermos retornar
todos os clientes e todos os pedidos existentes.

SELECT DISTINCT c.Nome, p.IDCliente
FROM Clientes c
FULL JOIN Pedidos p
ON c.ID = p.IDCliente

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

VIEWS
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

Uma VIEW em SQL é uma consulta armazenada que cria
uma representação virtual de uma tabela a partir dos
resultados de uma consulta SQL.

Por exemplo, criar uma View com a consulta que calcula
o total de cada pedido.

Pr
im

ár
ia

s
Ap

oi
o

CREATE VIEW ViewTotalPorPedido AS
SELECT
 P.ID AS ID_Pedido,
 P.DataHoraPedido,
 C.Nome AS NomeCliente,
 SUM(IP.Quantidade * IP.PrecoUnitario) AS
TotalPorPedido
FROM Pedidos AS P
JOIN Clientes AS C ON P.ID_Cliente = C.ID
JOIN ItensPedido AS IP ON P.ID = IP.ID_Pedido
GROUP BY P.ID, P.DataHoraPedido, C.Nome;

Pr
im

ár
ia

s
Ap

oi
o

Após criar a View podemos utilizá-la normalmente como
uma tabela.

SELECT *
FROM ViewTotalPorPedido;

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

TRIGGER
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

Trigger é um procedimento armazenado que é
executado automaticamente em resposta a um evento
específico em uma tabela.

Por exemplo, criar uma trigger que calcula
automaticamente o faturamento diário.

Pr
im

ár
ia

s
Ap

oi
o

CREATE TRIGGER CalculoFaturamentoDiario
AFTER INSERT ON ItensPedido
FOR EACH ROW
BEGIN

DELETE FROM FaturamentoDiario ;
 INSERT INTO FaturamentoDiario (Dia, FaturamentoTotal)
 SELECT
 DATE(P.DataHoraPedido) AS Dia,
 SUM(IP.Quantidade * IP.PrecoUnitario) AS Faturamento
 FROM Pedidos AS P
 JOIN ItensPedido AS IP ON P.ID = IP.ID_Pedido
 GROUP BY Dia
 ORDER BY Dia;
END;

Pr
im

ár
ia

s
Ap

oi
o

Ao inserir novos registros na tabela de itenspedidos, a
trigger será acionada:

INSERT INTO Pedidos(ID, IDCliente, DataHoraPedido,
Status)
VALUES(451, 27,'2023-10-07 14:30:00','Em Andamento');

INSERT INTO ItensPedidos
(IDPedido, IDProduto, Quantidade, PrecoUnitario)
VALUES(451, 14, 1, 6.0),
 (451, 13, 1, 7.0);

01000101 01110011 01100011 01101111 01101100
01100001 00100000 01100100 01100101 00100000
01000100 01100001 01100100 01101111 01110011
00001010

TRANSAÇÕES
// Glossário SQL_

Pr
im

ár
ia

s
Ap

oi
o

Pr
im

ár
ia

s
Ap

oi
o

Transações no SQL são usadas para garantir
a consistência e integridade dos dados, permitindo
que um conjunto de operações SQL seja tratado
como uma única unidade atômica.

Existem três principais comandos relacionados
a transações no SQL: BEGIN TRANSACTION, COMMIT
e ROLLBACK.

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, se quisermos iniciar uma transação
utilizamos o BEGIN ou o BEGIN TRANSACTION.

BEGIN TRANSACTION;

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, se quisermos reverter as alterações
realizadas nos dados,utilizamos o comando ROLLBACK.

ROLLBACK;

Pr
im

ár
ia

s
Ap

oi
o

Por exemplo, se quisermos confirmar as alterações
realizadas nos dados, utilizamos o comando COMMIT.

COMMIT;

Pr
im

ár
ia

s
Ap

oi
o

Parabéns por explorar o Glossário de SQL! Agora que você adquiriu
os comandos mais avançados da linguagem, é hora de aplicar esse
conhecimento. Utilize este material como referência em seus projetos
e desafios, praticando para aprimorar suas habilidades na
manipulação de bancos de dados. Ao se tornar mais confiante na
linguagem SQL, você estará preparado para enfrentar novos
desafios.

Muito obrigado por chegar até aqui e nos vemos nos próximos cursos
da formação em SQL da Alura. Até mais!

UTILIZE E DOMINE O SQL!

Escola_
DATA SCIENCE

Escola Data Science

AVALIE O CURSO E
DEIXE UM

COMENTÁRIO.Compartilhe um resumo de seus novos
conhecimentos em suas redes sociais.

Pr
im

ár
ia

s
Ap

oi
o

https://www.alura.com.br/
https://www.alura.com.br/escola-inovacao-gestao

Pr
im

ár
ia

s
Ap

oi
o

